#### **Dimensionality Reduction**



Data encoding or transformation methods are applied – to obtain either a reduced or compressed representation of the original data

Lossless methods Lossy methods

#### Effective methods for Lossy Dimensionality Reduction



Wavelet Transformation

**Principal Components Analysis** 



The discrete wavelet transform (DWT) is a linear signal processing technique that, when applied to a data vector X, transforms it to a numerically different vector, X0, of wavelet coefficients



# **Principal Components Analysis**



The original data are thus projected onto a much smaller space, resulting in dimensionality reduction.

# Unlike attribute subset selection, which reduces the attribute set size by retaining a subset of the initial set of attributes

searches for k n-dimensional orthogonal vectors that can best be used to represent the data, where  $k \le n$ .

# **Principal Components Analysis**



#### The basic procedure is as follows:

- 1. The input data are normalized, so that each attribute falls within the same range
- 2. PCA computes k orthonormal vectors that provide a basis for the normalized input data.
- 3. The principal components are sorted in order of decreasing "significance" or strength.
- 4. Because the components are sorted according to decreasing order of "significance," the size of the data can be reduced by eliminating the weaker components

### **Principal Components Analysis**





Principal components analysis.  $Y_1$  and  $Y_2$  are the first two principal components for the given data.

#### **Numerosity Reduction**



# **Original data replaced by alternative, smaller data representations.**

- **Parametric methods**
- **Non-parametric methods**

#### **Parametric Methods**



#### Store the data parameters instead of actual data

Regression

**Log-Linear models** 

#### Regression



#### **Linear Regression**

#### Data are modelled to fit a straight line

y=wx+b

w and b are regression coefficients x- random variable y-response variable

**Multi-Linear Regression** 

Which allows a response variable, y, to be modelled as a linear function of two or more predictor variable





#### **Log-Linear Regression**

#### Log-linear models can be used to estimate the probability of each point in a multidimensional space for a set of discretized attributes

This allows a higher-dimensional data space to be constructed from lower dimensional spaces

#### **Non-Parametric Methods**



Histograms

Clustering

Sampling

#### **Non-Parametric Methods**



#### Histograms

A histogram for an attribute, A, partitions the data distribution of A into disjoint subsets, or buckets. If each bucket represents only a single attribute-value/frequency pair, the buckets are called singleton buckets.



The numbers have been sorted: 1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30



Prepared By : Dr K RAJENDRA PRASAD, PROFESSOR, DEPT. OF CSE , RGMCET (Autonomous), Nandyal

## **Histogram (Partitioning Rules)**



**Equal-Width** 

- **Equal-Frequency**
- **V-optimal**
- MaxDiff

## Histogram



#### Histograms as approximations of data distribution

# Data distribution is a set of (attribute value, frequency)pairs

| Name      | Salary | Department         |  |
|-----------|--------|--------------------|--|
| Zeus      | 100K   | General Management |  |
| Poseidon  | 80K    | Defense            |  |
| Pluto     | 80K    | Justice            |  |
| Aris      | 50K    | Defense            |  |
| Ermis     | 60K    | Commerce           |  |
| Apollo    | 60K    | Energy             |  |
| Hefestus  | 50K    | Energy             |  |
| Hera      | 90K    | General Management |  |
| Athena    | 70K    | Education          |  |
| Aphrodite | 60K    | Domestic Affairs   |  |
| Demeter   | 60K    | Agriculture        |  |
| Hestia    | 50K    | Domestic Affairs   |  |
| Artemis   | 60K    | Energy             |  |

| Department         | Frequency |
|--------------------|-----------|
| General Management | 2         |
| Defense            | 2         |
| Education          | 1         |
| Domestic Affairs   | 2         |
| Agriculture        | 1         |
| Commerce           | 1         |
| Justice            | 1         |
| Energy             | 3         |













| (ESTD-1995) |
|-------------|

|                    | Histogram H1 |             |  |
|--------------------|--------------|-------------|--|
|                    | Frequency    | Approximate |  |
| Department         | in Bucket    | Frequency   |  |
| Agriculture        | 1            | 1.5         |  |
| Commerce           | 1            | 1.5         |  |
| Defense            | 2            | 1.5         |  |
| Domestic Affairs   | 2            | 1.5         |  |
| Education          | (1)          | 1.75        |  |
| Energy             | 3            | 1.75        |  |
| General Management | (2)          | 1.75        |  |
| Justice            | (1)          | 1.75        |  |





# Examples





## Histogram : Example –V-optimal



Take a simple set of data, for example, a list of integers: 1, 3, 4, 7, 2, 8, 3, 6, 3, 6, 8, 2, 1, 6, 3, 5, 3, 4, 7, 2, 6, 7, 2

Compute the value and frequency pairs

(1, 2), (2, 4), (3, 5), (4, 2), (5, 1), (6, 4), (7, 3), (8, 2)

"V-optimality rule states that the cumulative weighted variance of the buckets must be <u>minimized</u>"

# Histogram : Example –V-optimal



#### Option 1: Bucket 1 contains values 1 through 4. Bucket 2 contains values 5 through 8.

Bucket 1: Average frequency 3.25 Weighted variance 2.28

Bucket 2: Average frequency 2.5 Weighted variance 2.19

Sum of Weighted Variance 4.47

# Histogram : Example –V-optimal



#### Option 2: Bucket 1 contains values 1 through 2. Bucket 3 contains values 5 through 8.

Bucket 1: Average frequency 3 Weighted variance 1.41

Bucket 2: Average frequency 2.88 Weighted variance 3.29

Sum of Weighted Variance 4.70

Option1: 4.47, Option 2: 4.70 Hence, Option 1 is selected as per V-optimal rule